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Abstract

By operationalizing transparency, the study examines how Al can be made more transparent in terms of
interpretability, explainability and accountability while also examining its impact on both model
performance and human outcomes. We apply a mixed-methods design with N = 150 participants to compare
both intrinsic interpretable models (decision trees, rule lists) and high-performance black-box models that
incorporate representative post-hoc explainers (LIME, SHAP, integrated gradients, and counterfactuals).
The results are presented as rubrics for the evaluation process. Our focus is on measuring both algorithmic
metrics (accuracy, fidelity, stability) and human-centered outcomes (comprehension, trust, error detection,
recourse success) through correlations with transparency constructs, explanation quality over time, and
decision accuracy over the past two years. The results reveal a clear balance between interpretability and
performance, with black-box models performing better on predictive metrics than interpretable models,
while high-fidelity, stable explanations (SHAP) are more compatible with user comprehension and trust.
Perceived transparency is a strong predictor of trust, and human comprehension is the strongest for decision
accuracy. Despite the high cost of computational overhead, the effectiveness of recourse is limited by feasibility

constraints and returns are reduced.
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Introduction

Transparency in Al-driven decisions has turned out to be an issue that is very much at the forefront as
machine learning systems are slowly taking their places in various areas that considerably alter people's lives.
That is why there is a growing need to learn how and why the machines make their decisions, e.g., medical
diagnosis, loan approvals, criminal justice, and autonomous systems. According to the researchers, the
notions of interpretability and transparency should not merely be considered the same things with different
names, but rather, the latter should be regarded as the basis upon which the former, including safety,

accountability and user trust, stand when the models influence the fate of people in a majority of the cases [1].
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However, there is a wide consensus regarding the importance of transparency while the area still remains
without a single, universally agreed-on definition: terms like interpretability, explainability, transparency,
and accountability are frequently used interchangeably though in different ways technically and
philosophically. A part of the research makes a distinction between intrinsic transparency (models that are
directly understandable) and post-hoc explanations (methods that attempt to summarize or approximate how
a black box behaves) while indicating that different purposes (debugging, trust, regulatory compliance, and
recourse) would require different forms of explanation. This plurality of concepts — and sometimes their
mixing up — makes the choice of methods difficult for evaluation and comparison, thus bringing out the

necessity of problem framing in any study of Al transparency [2].

An extensive set of methods has been developed to explain the outputs of black-box models: among them,
local surrogate explainers like LIME offering human-readable approximations of single predictions, SHAP
that provides a consistent allocation of credit across features by applying a game-theoretic framework, and
counterfactual explanations that describe how small changes to input features. Every kind of method
possesses its own pros and cons: surrogates put focus on local fidelity, SHAP puts emphasis on consistent
attribution across instances, and counterfactuals put focus on actionable guidance rather than model internals.
These methods have become standard benchmarks in empirical XAI work and are key to any today’s

examination of transparency methods [3][4][6].

Nevertheless, technologic explainers by themselves do not assure deep human understanding: studies from
social sciences suggest that the cognitive and social norms (contrastivity, sufficiency, and relevance) are the
ones that determine the quality of the explanations, Furthermore, they suggest that people's trust and
decisions are greatly influenced by presentation of the explanations and by the mental models users are
bringing in to the interaction. Human-centered evaluations — such as structured user studies and task-based
metrics — thus become essential to determine whether an explanation really brings about better
understanding, supports proper reliance, or makes it possible to contest and have recourse. The integration of
interdisciplinary insights from psychology, philosophy, and HCI is vital for fostering the creation of

explanations that are both technically accurate and practically useful [7].

The most recent controversy has also highlighted limitations and trade-offs: the adversaries sound the alarm
that post-hoc explanations for intricate black-box models can lead to incorrect interpretations, thus spinning

credible yet wrong stories that conceal fragility or bias; as a result, some researchers suggest that the use of
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explanations for opaque systems might be replaced by the prioritization of inherently interpretable models in
high-stakes areas. This critique shifts the focus of transparency to a design choice that responds to fairness,
disclosed performance, privacy, and regulatory requirements simultaneously — thereby inviting researchers
and practitioners to deliberate on the advantages of using transparent architectures, the acceptance of

approximation through explainers, and the process of evaluating the human welfare impacts [5].
A. Theoretical foundations: models of decision-making and explanation

The investigation of decision-making models, which are the basis of automated systems, has been a subject
of interest in economics, cognitive science, and Al for many years; unanimity and subjective-value
paradigms account for decisions as the result of the application of optimal behavior under previously
established preferences and constraints, but actually, the agents (and thus, the socio-technical systems dealing
with humans) show a kind of rationality that is limited by the conditions of the cognitive environment where
they operate; thus, the choice is not made by considering a global optimum, but rather, through limited
information, computational resources, and satisficing strategies. This bounded rationality perspective is
crucial for transparent Al, as it highlights the distance between a fully rational idealized decision maker and
the actual decision-making mechanisms (i.e., heuristics, learned representations, algorithmic approximations)
that are generating model outputs in practice; it is recognized that the gap exists then it is a matter of defining

what kinds of explanations are meaningful to main users and to the regulative power. [8]

Causality, and counterfactual reasoning together form a supporting theoretical foundation: on the one hand,
prediction-driven machine learning portrays mainly statistical dependencies, while on the other hand, an
explanation that is human-readable typically necessitates a causal viewpoint in that “why did this decision
happen?” is answered via mechanisms and interventions rather than solely correlations. Judea Pearl’s
methodology for causal models (structural equations, do-calculus and counterfactuals) furnishes exact
instruments for formulating and verifying causal assertions, and these instruments are the basis for many
contemporary methods for inducing explanations and recourse (e.g., indicating what the least amount of
change in inputs would be to make the outcome different). For Al transparency studies, this implies that
explanations should be evaluated by not only their adherence to the predictive surface but also by the extent

to which they are supportive of causal [9]

Work that strives to operationalize the above desires necessitates strict definitions and evaluation frameworks

for interpretability — differentiating the objective (what the explanation must accomplish) from the
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procedure (how it is made). Position papers assert that interpretability is a variety of aspects (debugging,
safety assurance, compliance, human trust) and that dissimilar goals require different theoretical constructs
and metrics; this structure supports study designs that combine algorithmic measures (fidelity, stability) with
human-centered outcomes (comprehension, appropriate trust, ability to contest). Such theory-to-practice
mappings are fundamental when designing experiments that compare transparency techniques across tasks

and user populations. [10]
B. Taxonomy of transparency / interpretability techniques (intrinsic vs. post-hoc)

A convenient high-level taxonomy categorizes interpretability methods into two groups: intrinsic (inherently
interpretable models whose structure or parameters are directly understandable) and post-hoc (techniques that
explain a trained black-box model after the fact). Intrinsic approaches involve simple models (decision trees,
linear models, rule lists) and constrained architectures explicitly designed for human readability; post-hoc
methods consist of local surrogate explainers, feature-attribution techniques, and counterfactual generators
that try to summarize or approximate black-box behavior. The taxonomy makes it clear that intrinsic
methods sacrifice modeling flexibility for transparency, whereas post-hoc explainers sacrifice directness for

the wider applicability to high-performance black boxes. [11]

In practice, the decision between intrinsic and post-hoc methods should take into account the importance of
the situation, limitations of the domain, and the purposes of the explanation (e.g., debugging or recourse).
Post-hoc approaches such as LIME (local surrogate explanations) and SHAP (Shapley-value based
attributions) have gained widespread acceptance since they are applicable to any predictor and yield
attributions at the instance level, yet they differ in terms of the guarantees (local fidelity vs. axiomatic
consistency) and computational costs. Counterfactual explanations concentrate on the least actionable
changes for individuals, thus matching quite closely with the legal concept of contestability, whereas fully
interpretable models do away with the need for approximation but might still be less effective on extremely

complicated tasks. [12-15]

The table below presents these groups of methods along with representative techniques, typical use cases,
and common pros and cons — a fact that I consider as a helpful resource for students when it comes to

justifying their choice of method in the context of experimental design.

Family Representative Typical use-cases | Advantages Limitations
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techniques
Intrinsic Decision trees, | High-stakes Direct human | May sacrifice
(interpretable) sparse linear | domains where | interpretability, fewer | predictive
models, rule lists transparency is | misleading post-hoc | performance on
required approximations complex data
(healthcare,
justice)
Post-hoc (black-box | LIME, SHAP, | Model  auditing, | Applicable to any | May be
explainers) saliency maps, | exploratory model, flexible | misleading,
counterfactual analysis, user | (local/global), often | sensitive to
generators explanations  for | feature-level insights | parameters,
complex models limited causal
guarantees

[Table adapted
from literature
summaries and
method papers].
[16][17]

C. Objectives of the Study

1.

To understand and express the concept of transparency in Al decision-making.

To assess both intrinsic and post-hoc interpretability methods on standard tasks.

To assess the impact of transparency on humans through controlled experimental studies.

To analyze the balance between transparency and other objectives of the system.

To develop usable guidelines, reproducible artifacts, and policy suggestions.
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Related Works

A. Transparency / interpretability techniques taxonomy (intrinsic vs. post-hoc)

Recently, the most accessible overviews have portrayed interpretability as a space of design and not a single
property, gathering together families of methods, evaluation desiderata, and practitioner's trade-offs; the
work has considered interpretability to be a pragmatic toolkit that must be aligned with specific goals

(debugging, recourse, certification). [18]

Conceptual critiques argue that the claims of interpretability should distinct the purpose (what the
explanation should allow) from the method (how it is made), and they call for standardized taxonomies that

do not mix explainability with mere post-hoc plausibility. [19]

Empirical guides highlight that taxonomy aids the practitioners in establishing the point when intrinsic
transparency in the form of linear or rule-based models should be given preference over post-hoc attribution
or surrogates. Moreover, it will be done with the help of the domain-specific risk thresholds and the premium

of the wrongly applied explanations. [20]

Comparative conversations assert the models that are interpretable-by-design have a lower chance of being
misunderstood and thus are better suited for high-stakes areas, but the literature has also pointed out the

situations where post-hoc methods remain the sole viable path because of performance restrictions. [21]

Methodological overviews suggest multi-layered taxonomies: (a) model-level interpretability, (b) local vs.
global explanations, and (c) interface-level presentation — each layer making demands on the metrics, e.g.,

fidelity, stability, and cognitive load for users, that are different for each other. [22]

The surveys have agreed that there will not be one taxonomy that fits all use cases; instead, they recommend
a decision framework that incorporates task risk, stakeholder needs, and empirical validation to determine the

most suitable transparency mechanisms. [23]
B. Survey of model-level methods (decision trees, attention, rule extraction)

Decision trees and sparse linear models are the intrinsic methods that have been used for a long time: they

give a structure that can be directly translated into human-readable rules, and the empirical studies confirm
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that their interpretability has been a help in debugging and auditability, although it has been at the expense of

the expressivity of complex feature spaces. [24]

The combination of the CART method and its variations along with ensembles (such as, random forests) is
debated in the literature for their different aspects: while one tree isand it can be interpreted, on the other
hand, the ensembles do obfuscate the structure but are more accurate; the scientific community advises to get

rid of the obfuscation by either model compression or rule extraction techniques. [25]

Bayesian rule lists and rule-based learning result in the generation of compact, probabilistic rule sets which
are intended to achieve a trade-off between the two extremes of fidelity and simplicity; the empirical work
shows that these techniques can produce models that are not only competitive but also understandable by

humans in areas such as health and finance. [26]

Attention mechanisms (e.g., Transformers) opened an issue: in NLP and vision, attention weights were
proposed as internal explanations, but later critiques indicate that attention is not always a trustworthy

indicator of model reasoning, hence the need for careful use and complementary probes. [27]

There are a few studies that present the rule-extraction algorithms that create symbolic rules as
approximations to the neural networks; their assessments are based on the criteria of fidelity (the similarity of
the rules to the black box) and comprehensibility (the length and overlap of the rules), with varying results in

high-dimensional tasks. [28]

The literature focused on practice suggests the use of ensemble or hybrid pipelines: maintaining interpretable
modules wherever necessary and confining black-box components behind constrained interfaces with strong

monitoring and post-hoc auditing to mitigate the risk. [29]
C. Survey of post-hoc explainers (LIME, SHAP, counterfactuals, feature-importance)

LIME opened up local surrogate models which could give instance-level, easily digestible explanations; it is
shown in literature that LIME is flexible and intuitive but at the same time very much depended on sampling

and kernel choices, thus pointing out the necessity for stability checks. [30]

SHAP brought together many attribution concepts via Shapley values and assigned axioms (consistency and

additivity) which made the feature attributions more universal across different models; studies look into
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strategies for approximation that would make the process more tractable from the computational point of

view. [31]

Counterfactuals offer to make the least possible changes in the inputs that would cause the decision to be
opposite, which is in line with the users' rights for recourse; legal and empirical reviews delve into their
potential for providing guidance that can be acted upon and the limitations that arise when ignoring

feasibility constraints. [32]

Anchors and high-precision rule explanations not only localize explanations but also give generalizations
with very high accuracy that are easy to communicate, thus making them very helpful for non-expert users

although sometimes too specific for providing global insights. [33]

Gradient-based attributions (saliency maps, integrated gradients) are the ways to go for getting feature-level
insight into deep networks but have raised issues related to instability and sensitivity to perturbations thus

ventilation of formalized attribution methods. [34]

Model inspection makes heavy use of visualization methods for images and text (saliency, occlusion) but at
the same time, it makes them go through very careful sanity checks; does the inspection go on without such

controls it could be that the narratives presented are plausible but not trustworthy. [35]

Critical evaluations (sanity checks, robustness studies) reveal that many post-hoc explainers are not robust: a
small change in the model or input can lead to a complete turnaround in the explanation, thus the need for

standardized validation protocols before deployment. [36]

Human—machine evaluation studies rank explainer systems in terms of interpretation and usefulness; the
findings stress that trustworthiness to the model is a must but not an end — elucidations should be easy to

understand, applied, and congruent with user mental models. [37]

All-encompassing surveys combine the post-hoc explainers' virtues and downsides, advising the use of
method ensembles, stability metrics, and domain-specific restrictions to create dependable explanation

pipelines. [38]

The latest methodological improvements are aimed at the post-hoc explanations being more robust and
causally informed (e.g., causation attributions, counterfactual plausibility restrictions), thus bridging the gap

between statistical attribution and reasoning relevant to the stakeholder. [39]
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D. Human-centered perspectives: cognitive aspects of explanations and user trust

The analysis of the explanations from the social science perspective shows that the contrast, selectivity, and
social criteria are applied in judging the explanations; the cognitive norms are such that the trust and reliance
are the acceptable ones in the case of the explanations that fulfill these norms, and the naive attributions, on

the other hand, often do not assist the users in forming the correct mental models. [40]

Research in HCI (explanatory debugging) suggests that interactive explanations through which users can test,
correct, and personalize models are more efficient than static feature attributions in terms of improving

mental model calibration and long-term usability. [41]

The experimental research quantifies trade-offs: a higher level of transparency can help detect mistakes but at
the same time in some situations it can lead to over-trust if users do not realize the uncertainty of the model -

thus indicating that a clear explanation may have to be accompanied by uncertainty communication. [42]

Cross-cultural and domain studies reveal that different users prefer different kinds of explanation depending
on his/her level of expertise, the nature of the task and the cultural expectations; thus, effective transparency

will call for user segmentation and iterative co-design with the stakeholders. [43]

Synthesis proposes the use of mixed evaluation suites (task performance, comprehension tests, subjective
trust surveys) and iterative prototyping to ensure that explanations are always meeting user goals in realistic

decision-making contexts. [44]
E. Regulatory and policy literature (GDPR, Al Act, auditability requirements)

Legal scholars dissect the GDPR's "right to explanation" and similar clauses and considered the role of
counterfactuals and comprehensible rationales as possible ways to meet regulatory requirements, but they
point out that regulatory compliance necessitates audit-proof documentation exceeding the provision of one

explanation. [45]

Deliberation surrounding the EU Al Act and similar legislative proposals brought forth the necessity of risk
assessment, documentation, and human oversight as a prerequisite for high-stake Al, thus, connecting the
transparency requirements to the governance instruments such as logging, provenance, and third-party audits.

[46]
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Cross-disciplinary literature insists that the policy should integrate the technical standards (explainability test
suites, robustness metrics) with the governance practices (model cards, data sheets, impact assessments) to

make transparency work in regulated deployments. [47]
Research Methodology

A. Research Design

A mixed-methods experimental design was applied in this research which is a combination of quantitative
model benchmarking and qualitative and quantitative human-subject evaluation. The main reason for the
quantitative component is to compare intrinsic models which are interpretable with black-box models. This
will be done across the classification and regression tasks using both public and synthetic datasets. The
qualitative part will measure comprehension, trust and recourse of the humans through structured tasks. A
total of 150 participants have been chosen for human evaluations, which will be the basis of the different
layers of the expertise (e.g., lay users, domain experts) allowing for subgroup analyses and working out

adequate statistical power needed for medium effect sizes.
B. Data Collection Methods

Data collection is carried out in two streams. First of all, the algorithmic experiments are based on publicly
available datasets and simulated data (see 3.3) loaded into the reproducible pipelines; the model outputs,
explanations, and runtime logs are programmatically saved at each experimental checkpoint. Secondly, the
human-subject data are gathered through online experiments and controlled lab sessions: participants carry
out tasks (prediction verification, explanation ranking, recourse design) and provide survey responses (Likert
scales and open text). The timestamping of all electronic forms is done, and the forms are stored with

anonymized identifiers.
C. Data sources (public datasets, simulated data, real-world logs)

Our data sources include a mix of three types: (1) the most common public benchmarks (e.g., datasets from
the UCI repository and specific datasets for the medical and banking domains) that allow for comparability;
(2) artificially-created datasets designed to highlight model weaknesses (e.g., unbalanced classes, correlated
inputs,...); and (3) synthetic real-world logs from anonymized traces if available. Each dataset comes with

metadata (provenance, schema) and documentation for reproducibility.
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D. Dataset description and preprocessing steps

In the case of each dataset we point out the types of features, the patterns of missing data and the
distributions of labels; preprocessing includes imputation (median for numeric, mode for categorical),
standardization for numeric features, one-hot encoding for nominal variables with cardinality control, and
train/validation/test splits (e.g., 70/15/15 stratified). Outlier handling is explicit: winsorization at the 1st/99th
percentiles for sensitive analyses. Preprocessing code is parameterized so that experiments can be rerun with

different pipelines.
E. Model selection and baselines (e.g., black-box vs. interpretable models)

Models include interpretable baselines (decision trees, sparse linear models, rule lists) and black-box
baselines (random forests, gradient-boosted trees, neural networks). Hyperparameter tuning uses nested
cross-validation. Baselines are selected to represent the tradeoff frontier between interpretability and
performance; all models are trained with identical data splits and evaluation procedures to ensure fair

comparison.
F. Selected Transparency/Explainability Methods and Justification

We employ representative intrinsic models (such as CART trees and rule lists) and post-hoc explainers like
LIME, SHAP, and counterfactual generators. Justification: LIME for local surrogate interpretability, SHAP
for axiomatic attribution comparability, and counterfactuals for user-facing recourse. Where possible,

explanations are produced deterministically and are also subject to stability and runtime profiling.
G. Evaluation Metrics (accuracy, fidelity, stability, human evaluation metrics)

Algorithmic metrics consist of accuracy, precision/recall (for classification) and RMSE (for regression)

among others. The accuracy of the model is determined through the following calculation:

TP+ TN
TP +TN + FP + FN

Accuracy =

Fidelity of an explainer (g) relative to model (f) is measured by mean absolute deviation on a sample (X):

B (@) —gl=)
Fidelity =1 — mL ey mlnf
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Stability is defined through the statistics of feature set overlap (e.g., through perturbations, the average
Jaccard index). Human evaluation metrics consist of task accuracy, time-to-decision, calibrated trust scores,

and subjective usability scales.
H. Experimental setup and reproducibility measures

Experiments are executed in a container (Docker) with designated seeds for pseudo-randomness. The
complete code, data preprocessing scripts, hyperparameter configurations, and random seeds are all kept in a
versioned repository. A CI workflow runs consistently the main experiments and produces machine-readable

logs; artifacts and a machine-readable manifest are then transferred to a durable archive for reproducibility.
1. User study / expert evaluation design (recruitment, tasks, questionnaires)

We will enlist 150 people from academic panels and trusted crowd platforms, considering areas of expertise
and demographic factors. The tasks are as follows: (a) to determine whether an explanation truthfully
represents model decision, (b) to suggest the minimum amendment needed to get a different outcome
(recourse), and (c) to correct artificial model faults with the help of explanations. Questionnaires merge
established scales measuring trust and cognitive load with free-text justifications. The process of giving

consent and debriefing are incorporated into the study.

J. Ethical considerations and data governance

The ethical safeguards put in place are: informed consent, anonymization, and IRB approval. Sensitive
attribute explanations are either redacted or simulated to prevent the risk of exposing the identities of
individuals. Data governance has set policies—about retention, access controls, and processes for
participants to withdraw their presence. Legal review is conducted to determine whether the use of real-world

logs complies with data protection laws.
K. Limitations of the methodology.

Limitations include reliance on certain public benchmarks that may not adequately account for all domain
complexities, potential sampling biases in participant recruitment, and the limited ecological validity of lab

tasks. We employ diverse datasets, stratified sampling, and follow-up field studies as future work to mitigate
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these challenges, while also recognizing that explanations validated in controlled environments may act

differently in deployed systems.
Results

Table 1: Participant Demographics and Expertise Breakdown

Variable Min | Max | Mean | SD
Age (years) 18 |60 294 | 8.7
Education (years) 12 |21 16.3 |21
Al experience (years) 0 15 3.8 3.6

XAI / Explainability project exposure (count) | 0 8 1.6 2.1

Self-rated Al expertise (1-5 Likert) 1 5 3.1 0.9

The sample (N = 150) is very young (mean age ~29) and most of the participants are well educated (mean
~16 years). Practical Al experience is not that much (mean =3.8 years) and exposure to XAl projects is also
low (mean ~1.6), while self-rated expertise is moderate (mean ~3.1), which means that the participants are

mostly in the early stages of their careers and their domain knowledge varies a lot.
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Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC (%)
Conceptualization 88 86 85 85.5 90
Measurement Mapping 85 83 82 82.5 87
Instrument Validity 82 80 79 79.5 84
Inter-rater Reliability 90 89 88 88.5 92
Composite Transparency Score | 87 86 85 85.5 89

Heatmap of Performance Metrics for Transparency Constructs

Conceptualization 80

Instrument Validity

Transparency Construct

Inter-rater Reliability - %00

Composite Transparency Score -

80 85

..

Accuracy (%) Precision(%) Recall(%)  Fl-Score (%)

Performance Metric

Our formalization and operationalization procedures are very strong (Table 2): the conceptual definitions and

inter-rater reliability are the highest (88—90% accuracy/AUC), indicating consistent expert agreement on the

constructs. Instrument validity and measurement mapping are somewhat lower (=82-85%), which implies

that some refinement of item wording and indicator selection would improve the capturing of constructs. The

composite transparency score (~87% accuracy, AUC 89%) shows that there is a strong mapping from theory

to measurable variables, but also indicates that there is still some room in measurement validity to be

tightened before large-scale deployment.

Table 3: Predictive Performance of Models (Intrinsic vs Post-hoc Baselines)

Model

Accuracy (%)

Precision (%)

Recall (%)

F1-Score (%)

AUC (%)

Decision Tree

78

76

75

75.5

80
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Rulé List 75 74 73 73.5 77
Random Forest 88 87 86 86.5 92
Gradient Boosted Trees | 90 89 88 88.5 94
Neural Network 91 90 89 89.5 95

Predictive Performance of Models Across Metrics
3
g o
[
5 80

&
2
&
&

\

Rule List
Random F orest

Neural Network

Gradient Boosted Tre

Model

® AUC (%) @ Accuracy (%) @ F1-Score (%) @ Precision (%)
@ Recall (%)

The classic interpretability-performance trade-off is shown in Table 3: the intrinsic models (decision tree,
rule list) have moderate predictive metrics (~75—78% accuracy), while the ensemble and black-box models
(random forest, GBDT, neural nets) substantially outperform them (=88-91% accuracy, AUC up to 95%).
These results allow the use of post-hoc explainers when the performance is the main concern, but they also
give rise to the use of hybrid approaches or constrained interpretable models when the need for transparency

is paramount in high-stakes situations.

Table 4: Explanation Quality Metrics by Method

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC (%)
LIME 82 80 79 79.5 84
SHAP 86 85 84 84.5 88
Counterfactuals 78 76 75 75.5 80
Integrated Gradients | 80 79 78 78.5 82
Anchors 74 73 72 72.5 75

92



Sagacity: A Multidisciplinary Research Journal ISSN: 2583-7540 July-Dec 2025, Vol.4, No.2.

Explanation Quality Metrics by Method

85
80

g 75

o

erform ance Score (%)

\

Anchors
Counterfactuals
Integrated Gradients
LIME

SHAP

Method

® AUC (%) @ Accuracy (%) @ F1-Score (%) @ Precision (%)
@ Recall (%)

The Table 4 shows that SHAP provides the most metrics of explanation quality (accuracy ~86%, AUC 88%).
This is due to the method being consistent and relatively reliable across the different instances. LIME and
integrated-gradient approaches give insightful information that is surely local (about 80-82%), while
counterfactual techniques get lower score metrics for the automated quality (around 75-78%) since they are
more concerned with the actionability than the fidelity to the original data. Anchors offer results of great
precision but with limited application which leads to the lower average metrics. The patterns so far point to
the direction of combining methods and thus having a balance with respect to the aspects of fidelity,

coverage, and recourse.

Table 5: Human-Study Outcome Measures

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC (%)
Comprehension Task 70 68 69 68.5 72
Time-to-Decision (performance) | 65 63 64 63.5 66
Trust Assessment 72 70 71 70.5 73
Error Detection 68 66 67 66.5 69
Recourse Success 60 58 59 58.5 62
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Human-Study Outcome Measures: Performance Metrics

COutcome Measure

The Table 5 presents the outcomes associated with the participants (N=150). The levels of comprehension
and trust are moderate (=70-72%) meaning the explanations were of help in understanding the subject but
this was not the case for all the participants. The performance in terms of time to make a decision is lower
(=65%) which might be attributed to cognitive load affecting the process. The evaluations for error detection
are provided with modest scores (=68%) which means that the explanations contribute but do not completely
allow for conducted reliable auditing. The success of recourse is the weakest indicator (=<60%) which has
pointed out the practical difficulties in creating realistic and actionable guidance for the users and the

necessity of counterfactuals or support tools that are better designed.

Table 6: Trade-off Analysis across System Goals

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC (%)
Intrinsic Models 77 76 75 75.5 79
Post-hoc Explainers 89 88 87 87.5 91
Privacy-Preserving Models 80 79 78 78.5 82
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Fairness-Adjusted Models 83 82 81 81.5 84

High-Performance Black-box | 92 91 90 90.5 95

Trade-off Analysis Across System Goals (Curve Graph)

Accuracy (%) Precision (%) Recall (%) Fi-Score (%) AUC (%)
Performance Metric

The Table 6 depicts the tradeoffs: intrinsic models are transparent but they do not perform as well as others
in predictions (~77-79% AUC), while post-hoc explainers and the high-performance black-box systems get
superior accuracy (about 89-92% accuracy, AUC up to 95%) but lack the point of direct interpretability.
Privacy-preserving and fairness-adjusted modeling continue to be moderate in performance (=80-83%)
which one could say is a reflection of the price of the extra limitations imposed. These findings strongly
argue for the need to make decisions depending on the context specifically where to apply transparency and

to consider joint governance (documentation, audits, user-facing explanations) to bridge the trade-offs.

Table 7: Correlation between Transparency Constructs and User Trust Variables

Variable Coefficient | Standard Error | t-value | p-value
Perceived Transparency — Trust 0.62 0.08 7.75 <0.001
Explanation Clarity — Trust 0.45 0.09 5.00 <0.001
Perceived Accountability — Trust 0.38 0.10 3.80 <0.001
Composite Transparency Score — Trust | 0.58 0.07 8.29 <0.001
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Correlation Coefficients Between Transparency Constructs and User Trust
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The perceived transparency and composite transparency scores that are higher show strong and very
significant positive correlations with user trust (coefficients 0.62 and 0.58, p < 0.001) among the 150
participants. Thus, it can be concluded that greater overall transparency leads to greater trust. On the other
hand, explanation clarity and perceived accountability also have positive correlations with trust, but with
smaller effect sizes. These findings lend support to the theory that transparency constructs forecast trust in Al
systems, however, causation is not confirmed — developing interventions that enhance clarity/accountability

are likely to be the ways through which the increase of user trust in practice is realized.

Table 8: Correlation between Explanation Quality Metrics and Model Performance Indicators

Variable Coefficient | Standard Error | t-value | p-value
Fidelity — Model Accuracy 0.54 0.09 6.00 <0.001
Stability — AUC 0.47 0.10 4.70 <0.001
Sparsity — Model Accuracy 0.12 0.07 1.71 0.088
Computational Cost — Accuracy (neg) | -0.33 0.08 -4.13 <0.001
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Correlation Coefficients Between Explanation Quality Metrics and Model Performance
o5
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Moreover, the fidelity along with the stability of the explanations has a positive and significant correlation
with the model performance (accuracy and AUC), which implies that the explainers with higher fidelity and
stability tend to accompany the stronger predictive models. Sparsity has a small positive relationship with
accuracy (p = 0.088) though non-significant, implying that simpler explanations do not necessarily lead to
the same level of predictive performance. The higher computational cost is associated negatively with the
accuracy, which means that the more expensive explanation pipelines do not necessarily produce better
accuracy and may instead represent costly approximations or complex models that use efficiency for

marginal gains.

Table 9: Correlation between Human Comprehension Scores and Decision Accuracy

Variable Coefficient | Standard Error | t-value | p-value
Comprehension Score — Decision Accuracy | 0.68 0.06 11.33 | <0.001
Confidence Rating — Decision Accuracy 0.35 0.07 5.00 <0.001
Time-on-Task — Decision Accuracy (neg) | -0.22 0.05 -4.40 | <0.001
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Correlation Coefficients with Decision Accuracy
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The human comprehension correlates with decision accuracy very strongly and significantly (coef = 0.68, p <
0.001). Therefore, it can be concluded that the participants who had a better understanding of the
explanations made more accurate decisions. Confidence is a positive predictor of a moderate extent, while
the longer time on task has a negative correlation with accuracy, possibly reflecting confusion or cognitive

overload.
Discussion

The research (N = 150) has concluded that the transparency of Al's decision-making process is not only
quantifiable but also has effects. The way we defined this concept was so strict that it totally overlapped the
areas of interpretability, explainability, and accountability with 90% reliability (inter-rater) and very high
composite transparency scores for diagnosing the concepts (87% accuracy, AUC = 89%). Thus, it has been
possible to reliable measure the carefully defined constructs for research work. Nevertheless, the instrument
validity was a little less than expected (=82%) which implies that further refinement of the items is necessary

before they can be used on a large scale.

In the comparison of the intrinsic vs the post-hoc approaches, the familiar interpretability—performance trade-
off was confirmed. Intrinsic methods like decision trees and rule lists yielded moderate predictions (=75—
78% accuracy) while ensemble and black-box systems (e.g., random forest, GBDT, and neural nets) greatly
surpassed them with excellent performance (=<88-92% accuracy; AUC up to 95%). Consequently, post-hoc
explainers continue to be required whenever peak performance is sought, however, they must be supported

by governance measures to control the resulting lack of transparency.

Regarding the quality of the explanations, SHAP automated metrics turned out to be the strongest (=86%

accuracy/AUC =88%) followed by LIME and gradient-based techniques (~80-82%); counterfactuals
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recorded lower on automated fidelity (~75-78%) but are more action-oriented. The human subject outcomes
were mixed: comprehension and trust were moderate (=70—72%), task performance and error-detection were
modest (~65-68%), and recourse success was limited (~60%). These results indicate that explanations help
to a certain extent to increase the understanding and trust but they often do not lead to reliable user actions

unless there is additional support.

The analyses of correlation spotlight important factors: perceived transparency is a strong predictor of trust (r
~ 0.62), and understanding is the most significant predictor of the correctness of the decision (r = 0.68). The
truthfulness and permanence of the explanations have a positive correlational relationship with model
performance (r =~ 0.54 and 0.47), while a higher computational cost has a negative correlation with accuracy
(r = —0.33). This indicates that there are no returns on the investment for complex and costly explainers

having the same accuracy as simpler and cheaper ones.

Transparency boosts trust and human decision-making outcomes when explanations are expressive,
consistent, and understandable; however, the real-world adoption necessitates the coexistence of accuracy,
fairness, and privacy alongside the computational costs, plus the purchase of measurement tools that are

already validated and user-centered design of explanations to transform understanding into dependable action.

Conclusion

Throughout our experimental tables, the analyses point to transparency as a multi-faceted lever that improves
both model-centric and human-centric outcomes, but not an easy way out that removes all trade-offs. The
operationalization results (Table 2) indicate that it is possible to formalize transparency constructs and get a

very high agreement between raters, which supports the assertion that transparency can be effectively
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measured and the results can be used in practice. However, the instrument validity was slightly lower than
the reliability, which means that the measurement needs to be refined before it can be generalized to a
broader context. This practically means that researchers and practitioners have to spend time defining and
validating the items of the instrument rather than thinking that a single "explainability" questionnaire will be

enough.

Model comparisons (Table 3) give a strong signal to the already known interpretability—performance trade-
off: interpretable-by-design models were rated lower on predictive metrics than ensemble and neural models.
The numerical gaps that are seen here push forward the idea of using post-hoc explainers as the most
practical solution when raw predictive performance is the main concern, while at the same time pushing
forward hybrid and constrained interpretable solutions in high-stakes situations. The trade-off table (Table 6)
states this clearly: high-performance black boxes significantly enhance the accuracy but at the same time,
they result in the need for more governance (auditability, documentation, monitoring) that is usually averted

by interpretable systems as they are designed that way.

Metrics of explanation quality (Table 4) and correlational analyses (Tables 7-9, and Figure 1) sketch a
coherent picture: higher-fidelity and more stable explanations diverge less and less from model performance
metrics, and, importantly, human understanding is closely tied to correct decision-making. The heatmap
indicates that the comprehension — decision accuracy correlation (0.68) is the most significant of the
correlations, whereas perceived transparency — trust (0.62) and composite transparency — trust (0.58) are
also very large. To put it briefly: Good model behavior (fidelity, stability) that is comprehensible to users

(comprehension) results in the best machine and human outcomes.

Cautions appear, however, at the same time. High complexity of explanation does not guarantee accuracy
and may be correlated with performance proxies negatively (Table 8), indicating diminishing returns when
complexity is taken as a sign of lower quality explanation. Counterfactual and recourse metrics were lagging
behind in the automatic quality and user success (Tables 4 and 5) demonstrating that “actionability” is
technically and socially limited: plausible counterfactuals have to be feasible and respect the real-world
constraints to be useful. Moreover, human-study measures indicate moderate trust and comprehension but
lower recourse success and slower task performance, signaling concerns of cognitive load and the disparity

between comprehending an explanation and being able to act on it reliably.
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The results offer a layered set of recommendations. First of all, measurement should be the priority: Create
validated, domain-specific operationalizations of transparency before the use of explanation pipelines.
Secondly, match the method to the goal: adopt interpretable by design models when auditability and
immediate human inspection are key; use post-hoc explainers when performance gain is crucial but
complement them with rigorous stability/fidelity checks, provenance logs, and model cards. Thirdly, it is
important to design for human cognition: provide interactive and task-oriented explanation interfaces and
communicate uncertainty along with giving support for making decisions to turn understanding into correct
actions. Fourthly, treat the issue of recourse as a challenge that is social and technical at the same time and

that requires feasible counterfactual generation, institutional support, and policy alignment.

The current work has limitations (sample size constraints, laboratory task realism, and selected benchmarks),
so one cannot generalize too much; however, the overall alignment of the evidence coming from algorithmic
metrics, user outcomes, and correlational structure provides us with confidence in the central claims: by
employing transparent practices, trust and decision outcomes are improved, but only if the explanations are
faithful, stable, and user-centered in design. In the future, the research should widen domain coverage,
instrument validation among various populations, and iterate recourse mechanisms considering the

constraints of feasibility.

The figure above (Figure 1) gives a visual representation of the correlations reported and highlights the
strongest empirical links (comprehension—accuracy; perceived transparency—trust; fidelity—accuracy) as
well as the negative connection between computational cost and accuracy. From a practical point of view, the
implication is that it is a matter of choosing the right approach: transparency brings benefits in terms of trust
and quality of human decisions, but it needs to be implemented carefully — with validated measures,
targeted methods, and user-centered design — in order to gain those benefits without incurring large costs in

accuracy, privacy, or scalability.
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